Decode ways II¶
Time: O(N); Space: O(1); hard
A message containing letters from A-Z is being encoded to numbers using the following mapping way:
‘A’ -> 1
‘B’ -> 2
…
‘Z’ -> 26
Beyond that, now the encoded string can also contain the character ’*’, which can be treated as one of the numbers from 1 to 9.
Given the encoded message containing digits and the character ’*’, return the total number of ways to decode it.
Also, since the answer may be very large, you should return the output mod 109 + 7.
Example 1:
Input: s = “*”
Output: 9
Explanation:
The encoded message can be decoded to the string: “A”, “B”, “C”, “D”, “E”, “F”, “G”, “H”, “I”.
Example 2:
Input: s = “1*”
Output: 18
Explanation:
9 + 9 = 18
Constraints:
The length of the input string will fit in range [1, 105].
The input string will only contain the character ’*’ and digits ‘0’ - ‘9’.
[1]:
class Solution1(object):
"""
Time: O(N)
Space: O(1)
"""
def numDecodings(self, s):
"""
:type s: str
:rtype: int
"""
M, W = 1000000007, 3
dp = [0] * W
dp[0] = 1
dp[1] = 9 if s[0] == '*' else dp[0] if s[0] != '0' else 0
for i in range(1, len(s)):
if s[i] == '*':
dp[(i + 1) % W] = 9 * dp[i % W]
if s[i - 1] == '1':
dp[(i + 1) % W] = (dp[(i + 1) % W] + 9 * dp[(i - 1) % W]) % M
elif s[i - 1] == '2':
dp[(i + 1) % W] = (dp[(i + 1) % W] + 6 * dp[(i - 1) % W]) % M
elif s[i - 1] == '*':
dp[(i + 1) % W] = (dp[(i + 1) % W] + 15 * dp[(i - 1) % W]) % M
else:
dp[(i + 1) % W] = dp[i % W] if s[i] != '0' else 0
if s[i - 1] == '1':
dp[(i + 1) % W] = (dp[(i + 1) % W] + dp[(i - 1) % W]) % M
elif s[i - 1] == '2' and s[i] <= '6':
dp[(i + 1) % W] = (dp[(i + 1) % W] + dp[(i - 1) % W]) % M
elif s[i - 1] == '*':
dp[(i + 1) % W] = (dp[(i + 1) % W] + (2 if s[i] <= '6' else 1) * dp[(i - 1) % W]) % M
return dp[len(s) % W]
[4]:
sol = Solution1()
s = "*"
assert sol.numDecodings(s) == 9
s = "1*"
assert sol.numDecodings(s) == 18